Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bai-Wang Sun^a* and Lin Du^b

^aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and ^bDepartment of Chemistry, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: chmsunbw@seu.edu.cn

Key indicators

Single-crystal X-ray study T = 223 KMean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.123 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diazidobis(1,7-phenanthroline)zinc(II)

The title complex, $[Zn(N_3)_2(C_{12}H_8N_2)_2]$, possesses C_2 symmetry. The Zn^{2+} ion has a distorted tetrahedral coordination environment and is coordinated by two N atoms from two 1,7-phenanthroline ligands and by two N atoms of end-on-coordinated azides. In the crystal structure, the molecules stack up the *c* axis *via* π - π interactions between the 1,7-phenanthroline ligands.

Received 13 April 2005 Accepted 3 May 2005 Online 14 May 2005

Comment

The synthesis of new organic–inorganic hybrid compounds is a relatively new research area that has developed rapidly (Ciurtin *et al.*, 2001). A large number of complexes with azido ligands, from dimers to three-dimensional networks, have been structurally and magnetically characterized in recent years (Monfort *et al.*, 2000). Azido-bridged complexes have attracted considerable attention due to their structural diversity (Li *et al.*, 2002). They may coordinate as $\mu_{1,3}$ -N₃ (end-to-end, EE) or $\mu_{1,1}$ -N₃ (end-on, EO), or in even more exotic modes, such as $\mu_{1,1,3}$ -N₃ or $\mu_{1,1,1}$ -N₃ (Goher *et al.*, 2000; Ribas *et al.*, 1994). Recently, we have synthesized the title compound, (I), and its structure is reported here.

The molecular structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The Zn^{2+} ion is situated on a twofold axis and assumes a distorted tetrahedral geometry. It is coordinated by two terminal N atoms of two N_3^- ligands, and by two N atoms of two 1,7-phenanthroline ligands. Non-linear coordination of the N_3^- ligands to the Zn^{2+} centre is apparent from the Zn1-N1-N2 bond angles of 115.8 (2)°. The bond distances and angles in the 1,7-phenanthroline ligands are normal. They are nearly planar, with the largest deviation of any atom from the 1,7-phenanthroline ligands, which coordinate to the Zn^{2+} ion, is 80.56 (2)°.

The three-dimensional crystal structure of (I) can be regarded as being constructed via π - π stacking interactions, as

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) $\frac{1}{2} - x, y, 1$ -z.]

shown in Fig. 2. The interacting 1,7-phenanthroline ligands are nearly parallel to one another and are separated by a distance of ca 3.36 Å.

Experimental

To an aqueous solution (5 ml) of $Zn(OAc)_2 \cdot H_2O$ (219.22 mg, 1 mmol) was added 1,7-phenanthroline (182.22 mg, 1 mmol) dissolved in methanol (5 ml). This mixture was then added to an aqueous solution (10 ml) of NaN₃ (130.03 mg, 2 mmol). The resulting clear solution was left to stand undisturbed at room temperature. After two weeks, X-ray quality crystals of (I) were obtained by slow evaporation. These were filtered, washed with water and air dried. The yield was 55%. Analysis calculated for C₂₄H₁₆N₁₀Zn: C 56.68, H 3.17, N 27.56%; found: C 56.36, H 3.56, N 27.21%. IR (KBr disk): μ (N=NN) 2072 cm⁻¹.

Crystal data

$[Zn(N_3)_2(C_{12}H_8N_2)_2]$ $M_r = 509.84$ Orthorhombic, <i>Ibca</i> a = 13.7823 (13) Å b = 17.5908 (17) Å c = 18.1368 (18) Å $V = 4397.1 (7) \text{ Å}^3$ Z = 8 $D_r = 1.540 \text{ Mg m}^{-3}$	Mo K α radiation Cell parameters from 18 030 reflections $\theta = 2.3-30.0^{\circ}$ $\mu = 1.15 \text{ mm}^{-1}$ T = 223 (2) K Polyhedron, colourless $0.26 \times 0.22 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.748, T_{\max} = 0.812$ 18 030 measured reflections	3214 independent reflections 2346 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 30.0^{\circ}$ $h = -19 \rightarrow 16$ $k = -24 \rightarrow 24$ $l = -25 \rightarrow 24$
Refinement	
D efinition E^2	$w = 1/[\sigma^2(E^2) + (0.0601 R)^2]$

Refinement on H $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.123$ S=1.023214 reflections 159 parameters H-atom parameters constrained

(0.0691P) $1/[\sigma^2(F_0^2)]$ + 1.193P]

where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Figure 2 The crystal packing of (I), viewed along the c axis.

Table 1

Selected geometric parameters (Å, °).

Zn1-N1 ⁱ	1.954 (2)	N4-C8	1.329 (3)
Zn1-N4	2.0403 (16)	N4-C9	1.367 (2)
N1-N2	1.179 (3)	N5-C5	1.319 (3)
N2-N3	1.138 (3)	N5-C11	1.357 (2)
$N1^i - Zn1 - N1$	115.98 (15)	N3-N2-N1	177.4 (3)
$N1^{i}$ -Zn1-N4	101.76 (8)	C8-N4-C9	118.58 (17)
N1-Zn1-N4	108.41 (8)	C8-N4-Zn1	116.33 (13)
$N4-Zn1-N4^{i}$	121.29 (9)	C9-N4-Zn1	124.61 (13)
N2-N1-Zn1	122.60 (18)		

Symmetry code: (i) $-x + \frac{1}{2}, y, -z + 1$.

H atoms were placed in calculated positions and treated as riding, with C-H = 0.94 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Ciurtin, D. M, Dong, Y. B., Smith, M. D., Barclay, T. & ZurLoye, H. C. (2001). Inorg. Chem. 40, 2425-2434.

Goher, M. A. S., Cano, J., Journaux, Y., Abu-Youssef, M. A. M., Mautner, F. A., Escuer, A. & Vicente, R. (2000). Chem. Eur. J. 6, 778-784.

- Li, L. C., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). Inorg. Chem. 41, 1019-2021.
- Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191-193.
- Ribas, J., Monfort, M., Solans, X. & Drillon, M. (1994). Inorg. Chem. 33, 742-745.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.